m-cresol can be used as a solvent for extractive distillation of cumene-phenol mixture with cumene as an overhead product.

Acknowledgment

We thank John Warner for revision of the manuscript.
Glossary

C, M	constants in Norrish and Twigg equation
n	number of points
n_{D}	refraction index
P	pressure, kPa
r^{2}	correlation coefficient
S^{∞}	selectlvity at infinite dilution T
temperature, K T_{B}	boiling point, K liquid-phase mole fraction
\boldsymbol{y}	vapor-phase mole fraction

Greek Letters
$\gamma \quad$ activity coefficient
$\phi \quad$ fugacity coefficient
$\Lambda_{12}, \Lambda_{21}$ constants in Wilson model
$\rho \quad$ density, $\mathrm{g} / \mathrm{cm}^{3}$
$\sigma \quad$ average deviation $\left(\sum\left(y_{\text {expt }}-y_{\text {calco }}\right) / n\right)$

Suscripts

1 2 less volatile component calcd calculated
exptl experimental
Reglatry No. Phenol, 108-95-2; m-cresol, 108-39-4; cumene, 98-82-8.

Literature CHed

(1) Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry; Verlag Chemie: Weinheim, 1973.
(2) Cepeda, E.; Gonzalez, C.; Resa, J. M. J. Chem. Eng. Data 1989, 34. 270.
(3) Scheibel, E. G. Chem. Eng. Prog. 1948, 44, 927.
(4) Kolbe, B.; Gmehling, J.; Onken, U. Inst. Chem. Eng. Symp. Ser. 1978, No. 56, 1.3/23.
(5) Fredenslund, A. G.; Gmehling, J.: Rasmusen, P. Vapor-Llquld Equllthra Using UNIFAC; Elsevier: Amsterdam, 1977.
(6) Mato, F.; Cepeda, E. An . Qulm. 1984, 80, 338.
(7) van Ness, H. C.; Byer, S. M.; Glbbs, R. E. AICHE J. 1973, 19, 238.
(8) Herington, E. F. G. Nature (London) 1947, 160, 610.
(9) Herington, E. F. G. J. Inst. Pet. 1951, 37, 457.
(10) Black, C. Ind. Eng. Chem. 1958, 50, 403.
(11) Norrish, R. S.; Twigg, G. H. Ind. Eng. Chem. 1954, 46, 201, 204.
(12) Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.
(13) Riddick, J.; Bunger, W. Organtc Solvents; Wiley Interscience: New York, 1970.

PVTx Properties of the Binary System R 115 + R 114 and Its Thermodynamic Behavior

Naoyuki Yada, * Masahiko Uematsu, and Koichi Watanabe
Department of Mechanical Engineering, Kelo University, 3-14-1, Hlyoshi, Kohoku-ku, Yokohama 223, Japan

Abstract

This paper reports the PVTx properties of the R $115+$ R 114 system in a wide range of temperatures from 296 to 443 K , of pressures from 0.4 to 9.8 MPa , and of densities from 149 to $1313 \mathrm{~kg} / \mathrm{m}^{3}$. Five hundred ninety-seven PVTx measurements for four compositions, lie., 25, 50, 75, and $100 \mathrm{wt} \%$ R 115, have been measured along the 41 lsochores. The uncertaintles of the temperature, pressure, and density measurements are less than $\pm 8 \mathbf{m K}, \pm 2.2$ $\mathbf{k P a}$, and $\pm 0.1 \%$, respectively. On the basis of the experimental measurements of 100 wt \% R 115, we confirmed the rellability of our experimental apparatus and measurements. From PVTx measurements for 75 wt \% R 115, 50 wt \% R 115, and 25 wt \% R 115, we have established the thermodynamic behavior of this binary mixture. We have also compared the critical curve of the R 115 + R 114 system observed in the present experimental study with those of other binary fluorocarbon mixtures that have been reported by us.

Introduction

The PVTx properties of binary refrigerant mixtures must be known accurately for system design and for rellable assessment of cycle performance (1, 2).

Although the binary refrigerant mixture of the R 115 $\left(\mathrm{CClF}_{2} \mathrm{CF}_{3}\right.$; monochloropentafluoroethane) and R 114 ($\mathrm{CCIF}_{2} \mathrm{CCIF}_{2} ;$ 1,2-dichloro-1,1,2,2-tetrafluoroethane) system is one of the technically important mixtures, experimental mea-

[^0]surements of the thermodynamic properties of this system are not available. Continuing our own project of PVTx measurements of refrigerant mixtures, the R $12+\mathrm{R} 22$ system (3), R $22+$ R 114 system (4), R 13B1 + R 114 system (5), and R 152a + R 114 system (6,7), this paper reports the PVTx properties of the R $115+$ R 114 system over a wide range of temperatures from 296 to 443 K , of pressures from 0.4 to 9.8 MPa , and of densities from 149 to $1313 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. Five hundred ninety-seven PVTx measurements for four compositions, l.e., 25, 50, 75, and 100 wt \% R 115, have been measured along 41 isochores. On the basis of these experimental data, we have determined dew points, bubble points, and the critical point for each composition.

Experimental Section

The method, apparatus, and procedure of the PVTx measurements used here have been described in detail in our previous publications (9,10). In principle, the PVTx measurements of this work were made by the constant-volume method coupled with isothermal expansion.

The mass fraction of the mixture charged to the sample cell was determined by weighing the mass of each component on a chemical balance before mixing. The density of the sample was determined to be the ratio of the mass of the sample to the volume of the sample cell. The temperature of the sample was measured by a $25-\Omega$ platinum resistance thermometer which was mounted near the cell in a thermostated fluid bath. The pressure of the sample was transmitted through the diaphragm of the differential pressure indicator (DPI) to an external pressure measuring system by balancing it with the pressure of nitrogen gas, the pressure transmitting gas. The fact that

Table I. Experimental Data

$\rho, \mathrm{kg} / \mathrm{m}^{3}$	$T, \mathrm{~K}$	P, MPa	$\rho, \mathrm{kg} / \mathrm{m}^{3}$	$T, \mathrm{~K}$	P, MPa	$\rho, \mathrm{kg} / \mathrm{m}^{3}$	T, K	P, MPa	$\rho, \mathrm{kg} / \mathrm{m}^{3}$	T, \mathbf{K}	P, MPa
					100	R 115					
$737 .{ }^{\text {a }}$	303.073	1.0263	735.5	363.094	4.0096	927.7 ${ }^{\text {a }}$	322.838	1.6475	924.7	383.149	8.3359
$737.3^{\text {a }}$	313.156	1.3149	735.1	373.129	4.9135	$926.7^{\text {a }}$	343.082	2.5507	924.2	393.161	9.8915
$737.0^{\text {a }}$	323.197	1.6315	734.7	383.131	5.8423	926.3	352.915	3.7745	926.7	345.229	2.6867
$736.6{ }^{\text {a }}$	333.118	2.0682	734.3	393.168	6.7891	926.1	356.114	4.2408	926.6	346.150	2.8135
$736.2^{\text {a }}$	343.131	2.5507	733.9	403.171	7.7418	925.7	363.110	5.2727	$926.8^{\text {a }}$	341.124	2.4442
735.9	353.140	3.1441	733.5	413.166	8.7001	925.2	373.142	6.7938	$926.8^{\text {a }}$	342.121	2.4989
$75 \mathrm{wt} \%(76.8 \mathrm{~mol} \%) \mathrm{R} 115$											
$266.5^{\text {a }}$	303.145	0.8129	$420.5^{\text {a }}$	303.087	0.8239	$634.7^{\text {a }}$	363.103	2.9562	950.5	383.121	6.5941
$266.3^{\text {a }}$	323.126	1.2876	$420.1^{\text {a }}$	323.126	1.3186	634.1	383.110	4.2294	949.4	403.159	9.8152
$266.0^{\text {a }}$	343.151	1.9043	$419.7^{\text {a }}$	343.157	1.9927	633.4	403.132	5.6270	$952.1^{\text {a }}$	353.112	2.4944
$265.8^{\text {a }}$	363.136	2.6839	$419.3{ }^{\text {a }}$	363.123	2.8669	632.7	423.173	7.0599	$951.9^{\text {a }}$	357.120	2.6916
265.5	383.059	3.1665	$419.3{ }^{\text {a }}$	365.101	2.9618	632.4	433.177	7.7786	951.8	358.108	2.7727
265.2	403.125	3.6120	419.2	367.172	3.0630	632.0	443.193	8.4983	951.8	359.122	2.9201
265.1	413.209	3.8302	419.1	373.170	3.3459	$634.6{ }^{\text {a }}$	366.227	3.1278	951.7	361.118	3.2130
265.0	423.200	4.0450	418.9	383.153	3.7695	$634.6{ }^{\text {a }}$	367.172	3.1782	950.0	393.236	8.2118
264.8	433.178	4.2551	418.7	393.165	4.1832	$634.5{ }^{\text {a }}$	368.145	3.2338	$1035.0^{\text {a }}$	303.433	0.8416
264.7	443.159	4.4510	418.3	413.146	4.9684	634.5	369.127	3.2910	$1034.0^{\text {a }}$	323.174	1.3459
$265.9{ }^{\text {a }}$	353.198	2.3013	418.0	423.196	5.3639	634.4	371.092	3.4174	$1033.0^{\text {a }}$	343.116	2.0528
$265.8{ }^{\text {c }}$	361.135	2.6066	417.8	433.240	5.7548	633.7	393.129	4.9189	1032.5	353.152	2.9671
$265.8^{\text {a }}$	364.130	2.7168	417.6	443.185	6.1388	633.1	413.117	6.3387	1031.9	363.171	4.8755
265.7	365.129	2.7457	$419.4{ }^{\text {a }}$	361.141	2.7753	$801.2^{\text {a }}$	303.271	0.8344	1031.3	373.143	6.8341
265.7	366.124	2.7697	$419.3{ }^{\text {a }}$	364.134	2.9096	$800 .{ }^{\text {a }}$	323.157	1.3393	1031.0	378.154	7.8293
265.7	368.116	2.8176	$419.3{ }^{\text {a }}$	366.142	3.0087	$799 .{ }^{\text {a }}$	343.125	2.0406	$1032.8{ }^{\text {a }}$	348.127	2.2675
265.6	374.091	2.9593	419.2	369.137	3.1555	$798.9^{\text {a }}$	363.149	2.9871	$1032.7^{\text {a }}$	349.155	2.3153
265.4	393.098	3.3919	418.5	403.159	4.5726	798.1	383.119	4.8195	1032.7	350.132	2.4015
$334.5{ }^{\text {a }}$	323.166	1.3069	$528.2^{\text {a }}$	303.092	0.8267	797.2	403.141	6.9559	1032.6	351.135	2.5868
$334.2{ }^{\text {a }}$	343.163	1.9593	$527.7^{\text {a }}$	323.126	1.3248	796.8	413.148	8.0482	1032.5	352.116	2.7709
$333.8{ }^{\text {a }}$	364.338	2.8396	$527.2^{\text {a }}$	343.159	2.0091	796.4	423.212	9.1581	1032.2	358.148	3.9155
333.7	373.543	3.1976	$526.7^{\text {a }}$	363.195	2.9160	$798.9^{\text {a }}$	365.126	3.0932	1031.6	368.163	5.8494
333.3	393.132	3.8004	526.2	383.143	4.0079	$798.8{ }^{\text {a }}$	366.152	3.1611	1030.7	383.133	8.8238
333.2	403.199	4.0989	525.9	393.183	4.5448	798.8	367.148	3.2339	$1198.8{ }^{\text {a }}$	303.245	0.8380
333.0	413.184	4.3816	525.4	413.130	5.6316	798.7	368.143	3.3268	$1198.2^{\text {a }}$	312.773	1.0573
332.8	423.166	4.6678	525.1	423.136	6.1746	798.7	369.109	3.4183	$1197.7^{\text {a }}$	323.097	1.3458
332.7	433.166	4.9536	524.8	433.143	6.7151	798.6	371.130	3.6140	1197.0	333.133	3.5507
332.5	443.144	5.2330	524.5	443.185	7.2562	798.5	373.133	3.8106	1196.2	343.325	6.6929
$333.9{ }^{\text {a }}$	357.126	2.5328	$526.8^{\text {a }}$	361.097	2.8152	797.7	393.126	5.8757	$1197.5^{\text {a }}$	325.118	1.4121
$333.9{ }^{\text {a }}$	359.156	2.6166	$526.7^{\text {a }}$	364.129	2.9685	$824.0^{\text {a }}$	303.157	0.8337	$1197.5^{\text {a }}$	326.145	1.4420
$333.9{ }^{\text {a }}$	361.142	2.7026	$526.7^{\text {a }}$	365.118	3.0186	$823.2^{\text {a }}$	323.134	1.3314	1197.4	327.141	1.7268
$333.8{ }^{\text {a }}$	362.150	2.7522	526.6	367.121	3.1238	$954.3^{\text {a }}$	303.225	0.8349	1197.3	328.156	2.0358
$333.8{ }^{\text {a }}$	363.132	2.7971	526.6	369.130	3.2311	$953.5^{\text {a }}$	322.935	1.3387	1197.2	330.115	2.6340
$333.8{ }^{\text {a }}$	365.123	2.8824	526.4	373.168	3.4586	$952.5^{\text {a }}$	343.127	2.0412	1196.6	338.096	5.0722
333.8	367.132	2.9686	525.6	403.121	5.0877	951.6	363.139	3.5106	1195.8	348.145	8.1853
333.7	369.115	3.0531	$636.5^{\text {a }}$	303.126	0.8307	951.1	373.076	5.0142	1195.4	353.179	9.7544
333.5	383.136	3.4970	$635.9^{\text {a }}$	323.140	1.3373						
$50 \mathrm{wt} \%$ ($52.5 \mathrm{~mol} \%$) R 115											
$149.6{ }^{\text {a }}$	302.148	0.5749	235.2	376.129	2.5458	597.1	433.155	6.3052	$945.9^{\text {a }}$	353.144	1.9520
$149.5^{\text {a }}$	323.126	0.9202	235.2	377.143	2.5767	596.8	443.154	6.9406	$945.4{ }^{\text {a }}$	363.166	2.3529
$149.3{ }^{\text {a }}$	346.150	1.4296	235.2	379.137	2.6212	598.6°	386.148	3.3879	$944.9{ }^{\text {a }}$	373.166	2.8249
149.2	363.133	1.8746	$235.2^{\text {a }}$	374.156	2.4853	598.5	388.148	3.5065	943.9	393.122	5.6910
149.1	373.162	1.9875	234.7	423.162	3.4590	598.5	389.152	3.5670	943.3	403.142	7.2291
149.0	393.141	2.2025	$553.9^{\text {a }}$	303.331	0.6428	598.5	390.147	3.6270	942.8	413.163	8.7804
148.8	413.164	2.4103	$553.3^{\text {a }}$	323.113	1.0312	598.4	393.165	3.8109	944.9	374.160	2.9176
148.7	433.179	2.6136	$552.8{ }^{\text {a }}$	343.047	1.5675	$598.8^{\text {a }}$	379.069	3.0202	944.8	375.138	3.0520
$149.3{ }^{\text {a }}$	351.123	1.5635	$552.3^{\text {a }}$	363.128	2.2810	$754.9{ }^{\text {a }}$	303.137	0.6443	944.8	376.156	3.1970
$149.2{ }^{\text {a }}$	361.150	1.8412	$551.7^{\text {a }}$	383.135	3.1940	$754 .{ }^{\text {a }}$	323.131	1.0430	944.7	377.112	3.3317
149.2	362.157	1.8629	$551.7{ }^{\text {a }}$	385.135	3.2994	$753.5^{\text {a }}$	343.122	1.5924	944.4	383.138	4.2085
149.2	364.125	1.8837	$551.7^{\text {a }}$	386.144	3.3557	$752.7^{\text {a }}$	363.149	2.3240	943.6	398.146	6.4589
149.2	365.128	1.8950	551.6	387.170	3.4115	752.0	383.146	3.3028	$1045.5{ }^{\text {a }}$	303.107	0.6472
149.1	367.127	1.9158	551.6	388.155	3.4645	751.6	393.178	4.0560	$1044.5{ }^{\text {a }}$	323.147	1.0499
149.0	383.156	2.0911	551.6	389.141	3.5184	751.2	403.122	4.9681	$1043.5{ }^{\text {a }}$	343.154	1.6074
148.9	403.168	2.3038	551.5	393.154	3.7455	750.4	423.149	6.8159	$1042.5{ }^{\text {a }}$	363.144	2.3614
148.7	423.145	2.5097	550.9	413.135	4.8621	749.9	433.151	7.7595	1041.9	373.062	4.2173
$236.0^{\text {a }}$	300.916	0.6270	550.6	423.116	5.4306	749.5	443.180	8.7128	1041.6	378.121	5.1728
$235.8^{\text {a }}$	323.143	0.9732	550.3	433.147	5.9984	751.9	385.153	3.3653	1041.3	383.136	6.1605
$235.6^{\text {a }}$	343.128	1.4496	550.0	443.130	6.5640	751.9	386.181	3.4399	1041.0	388.135	7.1508
$235.5^{\text {a }}$	353.179	1.7444	551.2	403.124	4.3066	751.8	387.150	3.5236	1040.7	393.139	8.1495
$235.2^{\text {a }}$	373.130	2.3763	$601.0^{\text {a }}$	304.819	0.6711	$752.1^{\text {a }}$	381.147	3.1111	$1042.5^{\text {a }}$	362.126	2.3119
235.1	383.074	2.6979	$600.4^{\text {a }}$	323.091	1.0372	752.0	383.263	3.2381	1042.4	364.188	2.5077
235.0	393.165	2.8960	$599.9^{\text {a }}$	343.030	1.5781	751.9	384.147	3.2936	1042.4	365.145	2.6859
234.9	403.174	3.0860	$599.3^{\text {a }}$	363.138	2.2996	750.8	413.157	5.8260	1042.2	368.132	3.2526
234.8	413.211	3.2735	$598.7^{\text {a }}$	383.110	3.2245	948.0°	306.491	0.7037	1040.3	398.132	9.1531
234.5	433.166	3.6372	598.1	403.127	4.4157	$947.2^{\text {a }}$	324.163	1.1021	$1312.6{ }^{\text {a }}$	312.184	0.8458
234.4	443.180	3.8157	597.8	413.132	5.0381	$946.8^{\text {a }}$	333.164	1.3038	1311.7	323.113	4.2589
$235.2^{\text {a }}$	375.206	2.5214	597.4	423.164	5.6727	946.3^{a}	343.141	1.6056	$1312.4{ }^{\text {a }}$	315.181	0.9340

Table I (Continued)

$\rho, \mathrm{kg} / \mathrm{m}^{3}$	T, K	P, MPa	$\rho, \mathrm{kg} / \mathrm{m}^{3}$	T, K	P, MPa	$\rho, \mathrm{kg} / \mathrm{m}^{3}$	T, K	P, MPa	$\rho, \mathrm{kg} / \mathrm{m}^{3}$	T, K	P, MPa
1312.2	317.161	1.7642	1312.1	319.129	2.5885	1311.0	331.109	7.6027	1310.6	335.134	9.2927
1312.3	316.147	1.3401	1311.3	327.130	5.9296	1310.8	333.125	8.4457			
$25 \mathrm{wt} \%$ ($26.9 \mathrm{~mol} \%$) R 115											
$155.1^{\text {a }}$	304.161	0.4315	250.1	408.162	2.9802	$702.8{ }^{\text {a }}$	323.152	0.7527	952.4	433.178	9.5086
$155.0^{\text {a }}$	323.140	0.6803	$315.7^{\text {a }}$	308.954	0.5122	$702.1{ }^{\text {a }}$	343.134	1.1682	$954.9{ }^{\text {c }}$	387.079	2.6817
$154.8{ }^{\text {a }}$	343.106	1.0377	$315.5^{\text {a }}$	323.094	0.7214	$701.4^{\text {a }}$	363.183	1.7356	$954.8{ }^{\text {a }}$	388.134	2.7331
$154.7{ }^{\text {a }}$	363.129	1.5204	$315.2^{\text {a }}$	343.172	1.1124	$700.7^{\text {a }}$	383.173	2.4778	954.8	389.155	2.8298
154.5	383.137	1.9911	$314.9{ }^{\text {a }}$	363.151	1.6373	699.9	405.785	3.5692	954.7	390.168	2.9729
154.5	393.140	2.1053	$314.6{ }^{\text {a }}$	383.120	2.3201	698.5	443.173	6.4496	954.7	391.154	3.1141
154.4	403.165	2.2157	314.3	403.165	3.1135	$700.4^{\text {a }}$	393.186	2.9288	$1109.7{ }^{\text {a }}$	303.099	0.4599
154.3	413.130	2.3235	314.1	412.913	3.3879	$700.2^{\text {a }}$	399.145	3.2328	$1108.7{ }^{\text {a }}$	323.161	0.7566
$154.6{ }^{\text {a }}$	371.138	1.7555	313.9	423.197	3.6676	$700.1^{\text {a }}$	401.153	3.3442	$1107.7^{\text {a }}$	343.131	1.1792
$154.6{ }^{\text {a }}$	373.147	1.8146	313.8	433.156	3.9325	700.0	403.153	3.4683	$1107.1^{\text {a }}$	353.144	1.4472
$154.6{ }^{\text {a }}$	374.121	1.8460	313.6	443.082	4.1903	700.0	404.144	3.5360	$1106.6{ }^{\text {a }}$	363.140	1.7607
$154.6{ }^{\text {a }}$	375.123	1.8771	$314.4{ }^{\text {a }}$	393.146	2.7369	699.9	406.378	3.6960	1106.0	373.152	2.8368
$154.6{ }^{\text {a }}$	376.147	1.9048	$314.4{ }^{\text {a }}$	396.156	2.8672	699.8	408.155	3.8277	$1106.4{ }^{\text {a }}$	367.133	1.8923
154.6	377.161	1.9196	$314.3{ }^{\text {a }}$	397.149	2.9069	699.3	423.163	4.9628	$1106.3^{\text {a }}$	368.143	1.9277
154.6	379.000	1.9407	$314.3^{\text {a }}$	398.136	2.9467	$883.5^{\text {a }}$	303.590	0.4654	$1106.3^{\text {a }}$	369.137	1.9665
154.2	423.182	2.4315	314.3	399.153	2.9945	$882.7^{\text {a }}$	323.179	0.7560	1106.2	370.143	2.1548
154.2	433.178	2.5360	314.3	401.142	3.0568	881.9^{a}	343.098	1.1740	1106.1	371.121	2.3773
154.1	443.175	2.6401	560.0°	302.694	0.4488	$881.0^{\text {a }}$	363.193	1.7478	1105.7	378.185	3.9840
$200.2^{\text {a }}$	302.016	0.4104	$559.5^{\text {a }}$	323.105	0.7465	880.6^{a}	373.165	2.0982	1105.0	388.153	6.2767
$200.0^{\text {a }}$	323.641	0.6970	$559.0^{\text {a }}$	343.125	1.1572	$880.1{ }^{\text {a }}$	383.100	2.5033	1104.7	393.160	7.4499
$199.8{ }^{\text {a }}$	343.112	1.0565	$558.5^{\text {a }}$	363.093	1.7099	$879.7{ }^{\text {a }}$	393.139	2.9677	1104.0	403.162	9.8030
$199.6^{\text {a }}$	363.105	1.5487	$557.9^{\text {a }}$	383.150	2.4428	879.2	403.159	4.0179	$1204.0{ }^{\text {a }}$	307.141	0.5090
$199.4{ }^{\text {a }}$	383.123	2.1982	$557.6^{\text {a }}$	393.155	2.8855	878.7	413.108	5.2121	$1203.1{ }^{\text {a }}$	323.038	0.7562
199.2	403.163	2.5778	$557.3^{\text {a }}$	403.180	3.3889	877.7	433.108	7.7356	$1202.0^{\text {a }}$	343.154	1.1842
199.1	413.160	2.7308	557.0	413.177	3.9420	877.2	443.179	9.0304	1201.4	353.172	1.7244
199.0	423.119	2.8800	556.7	423.196	4.4868	879.6	395.137	3.0884	1200.6	363.132	4.7094
198.9	433.114	3.0294	556.5	433.107	5.0344	879.6	396.143	3.2004	1200.2	368.084	6.2146
198.8	433.180	3.1735	556.2	443.169	5.5901	$879.6{ }^{\text {a }}$	394.140	3.0089	1199.8	373.101	7.7406
199.4	386.149	2.3063	$557.3^{\text {a }}$	404.154	3.4460	879.5	398.138	3.4294	1199.4	378.154	9.2865
199.3	387.145	2.3231	557.3	405.191	3.5034	878.2	423.171	6.4718	$1201.7{ }^{\text {a }}$	348.116	1.3133
199.3	388.105	2.3410	557.2	406.141	3.5569	$956.9^{\text {a }}$	343.104	1.1747	1201.6^{a}	350.154	1.3682
199.3	389.139	2.3579	557.2	407.217	3.6151	$955.1^{\text {a }}$	383.089	2.5108	$1201.5^{\text {a }}$	351.124	1.3936
199.3	391.119	2.3877	557.2	409.117	3.7197	954.6	393.154	3.4006	1201.4	352.129	1.4423
199.3	392.269	2.4223	$557 .{ }^{\text {a }}$	399.141	3.1836	954.0	403.146	4.8668	1201.3	354.119	2.0035
$250.9{ }^{\text {a }}$	347.296	1.1802	$557.4^{\text {a }}$	401.151	3.2862	953.5	413.169	6.3925	1200.9	358.629	3.3590
$250.4{ }^{\text {a }}$	383.135	2.2604	$703.4{ }^{\text {a }}$	302.992	0.4538	952.9	423.163	7.9412			

${ }^{a}$ Values measured at a state of vapor-liquid coexistence. The values of density and mass fraction in this state are only nominal.
the differential pressure between the sample and nitrogen gas depends only on temperature requires some systematic calibration of the DPI at different temperatures. The required correction due to mechanical behavior of the DPI is at most 0.1% of the sample pressure. It should be noted that the thermodynamic equilibrium between the sample and thermostated bath fluid is always maintained carefully not only by stirring the fluid continuously so as to keep the temperature fluctuation within $\pm 5 \mathrm{mK}$ but also by obsenving the temperature and pressure always at the same time every $1 / 4 \mathrm{~h}$.

The uncertainty in calibrating the platinum resistance thermometer is less than $\pm 3 \mathrm{mK}$, and the bath fluid temperature was always controlled within the fluctuation of $\pm 5 \mathrm{mK}$. Thus the uncertainty of the temperature measurements was less than $\pm 8 \mathrm{mK}$. Since the total hydrostatic pressure correction is much smaller than 0.5 kPa , we ignore it. The uncertainty of the pressure measurements due to the differential pressure indicator is less than $\pm 0.2 \mathrm{kPa}$ and that of the air-piston pressure gauge used in the pressure range below 4 MPa is less than $\pm 0.4 \mathrm{kPa}$, while that of the oil-piston pressure gauge used in the pressure range above 4 MPa is less than $\pm 2 \mathrm{kPa}$. Therefore, the overall uncertainty in the pressure measurements was less than $\pm 0.6 \mathrm{kPa}$ for pressures below 4 MPa and less than $\pm 2.2 \mathrm{kPa}$ for those above 4 MPa , respectively. The uncertainty in the density measurements accumulates after repeated expansions. The uncertainty in mass measurement is less than 0.04%, whereas that of inner volume calibration is less than 0.03%. Since the number of expansions does not exceed three in the present work, the overall uncertainty in the density measurements is estimated to not exceed $\pm 0.1 \%$. The un-
certainty of the mass fraction measurements is estimated to be less than $\pm 0.1 \%$. The prescribed quantity of $99.97 \mathrm{wt} \%$ pure R 114 , being an isomeric blend of $95 \% \mathrm{CCIF}_{2} \mathrm{CCIF}_{2}$ and $5 \% \mathrm{CCl}_{2} \mathrm{FCF}_{3}$, and that of 99.999 wt \% pure R 115 were prepared in separate vessels, which were evacuated prior to being filled.

Results

The experiments were carried out for four compositions, i.e., 25, 50, 75, and $100 \mathrm{wt} \%$ R 115. In this study we measured the vapor pressures and PVT properties of pure R 115 along two isochores in order to test their agreement with our own data reported previously (8). The present vapor-pressure data and PVT data of pure R 115 are in good agreement with those in our previous publication (8) within $\pm 0.2 \%$ and $\pm 0.8 \%$ pressure deviation, respectively. Table I summarizes all the unsmoothed experimental data including vapor-liquid data in the two-phase region (in Table I those data are identified by footnote a). Ten series of PVTx measurements for the mixture of $25 \mathrm{wt} \%$ (26.9 $\mathrm{mol} \%)$ R $115+75 \mathrm{wt} \%$ ($73.1 \mathrm{~mol} \%$) R 114 cover the density range from 154 to $1204 \mathrm{~kg} / \mathrm{m}^{3}$. Table I shows the 143 $P V T x$ data for this composition along 10 isochores including 69 data in the vapor-liquid two-phase region. For the mixture of $50 \mathrm{wt} \%(52.5 \mathrm{~mol} \%)$ R $115+50 \mathrm{wt} \%$ ($47.5 \mathrm{~mol} \%$) R 114, the observations correspond to densities from 149 to 1313 $\mathrm{kg} / \mathrm{m}^{3}$. Table I lists 124 PVTx measured data for this composition along eight isochores, including 68 points in the va-por-liquid two-phase region. For the mixture of $75 \mathrm{wt} \%$ (76.8 $\mathrm{mol} \%$) R $115+25 \mathrm{wt} \%(23.2 \mathrm{~mol} \%$) R 114, the mea-

Figure 1. Critical curves of binary refrigerant mixtures.
surements cover densities from 265 to $1199 \mathrm{~kg} / \mathrm{m}^{3}$. The 144 PVTX data along 10 isochores, including 79 data in the vaporliquid two-phase region are tabulated in Table I.

Discussion

The detailed examination and discussion of the dew- and bubble-point curves of this R $115+$ R 114 system have been described in another paper (11). In this report we discuss the comparison of this system with other refrigerant mixtures that have also been reported by the present authors (3-7).

For the purpose of comparing some typical thermodynamic behaviors for the R $115+$ R 114 system with those of the four refrigerant mixtures that we have measured previously, i.e., R 12 + R 22 (3), R 22 + R 114 (4), R 13B1 + R 114 (5), and R 152a + R $114(6,7)$, we have prepared Figure 1. Although the critical curves usually bend near the critical points of polar substances, as discussed in ref 7, we do not find such behavior for the present R $115+$ R 114 system. We found that the behavior of the present mixture is similar to that of the system R 1381 + R 114. Both critical curves have a tendency to be convex to the high-pressure side. The mixture of R $1381+$ $R 114$ is unique in the sense that its components have a large difference in the critical temperature (about 80 K) and a small
difference in critical pressure (about 0.70 MPa). For the present mixture, the difference in the critical temperature of the components is also large (about 60 K), and in the critical pressure the difference is similarly small (about 0.14 MPa). Thus, the behavior of thermodynamic properties for binary refrigerant mixtures may depend rather heavily on the differences in the critical parameters of their respective components. This should be subjected to more detailed discussion with further accumulation of additional data.

Acknowledgment

We are greatly indebted to the National Research Laboratory of Metrology, Tsukuba, Japan, for the calibration of the thermometer, to Shin-etsu Chemicals Co., Ltd., Tokyo, for furnishing the silicone oil, to Du Pont-Mitsui Fluorochemicals Co., Ltd., Tokyo, and to Asahi Glass Co., Ltd., Tokyo, for kindly furnishing the very pure samples. The assistance of Hideaki Tazawa and Hiroyuki Hamamoto is gratefully acknowledged. We also acknowledge Katsuhiko Kumagai and Yin Jian-min for their valuable cooperation.

Reglstry No. R 115, 76-15-3; R 114, 76-14-2.

Llterature Clted

(1) Kruse, H. Int. J. Refrig. 1981, 4 (3), 159.
(2) Kruse, H.; Kuever, M. Scl. Tech. Frold 1986, 111.
(3) Takaishi, Y.; Kagawa, N.; Uematsu, M.; Watanabe, K. Proc. Symp. Thermophys . Prop ., 8th 1982, 2, 387.
(4) Hasegawa, N.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1985, $30(1), 32$.
(5) Hosotani, S.; Maezawa, Y.; Uematsu, M.; Watanabe, K. J. Chem. Eng. Data 1988, 33(1), 20.
(6) Yada, N.; Uematsu, M.; Watanabe, K. Proc. Int. Congr . Refrlg., 17th 1887, B, 134.
(7) Yada, N.; Uematsu, M.; Watanabe, K. Trans. Jpn. Assoc. Refrig. 1988, 5(1), 107.
(8) Yada, N.; Uematsu, M.; Watanabe, K. Nippon Kkalgakkal Ronbunshu, B-hen 1989, 55(516), 2426.
(9) Takalshi, Y.; Uematsu, M.; Watanabe, K. Proc. Int. Congr. Refrig., 15th 1978, 2, 117.
(10) Takaishi, Y.; Uematsu, M.; Watanabe, K. Bull. JSME 1982, 25(204), 944.
(11) Yada, N.; Uematsu, M.; Watanabe, K. Int. J. Thermophys . 1989, 10(3), 639.

Recelved for review December 8, 1988. Accepted July 25, 1989. This study has been partlally supported by the Japanese Associatlon of Refrigeration, Tokyo.

Correlation of the Phase Equilibrium Data for the Heptane-Toluene-Sulfolane and Heptane-Xylene-Sulfolane Systems

George W. Cassell, ${ }^{\dagger}$ Mohamed M. Hassan, and Anthony L. HInes*
Department of Chemical Engineering, University of Missouri-Columbia, Columbia, Missouri 65211

Liquid-llquild equillbrium data were measured for the heptane-toluene-sulfolane system at $25^{\circ} \mathrm{C}$ and for the heptane-xylene-euhtolane system at 17,25 , and $50^{\circ} \mathrm{C}$. The NRTL and UNIQUAC equations were used to correlate the expermental data and to predict the phase compositions of the ternary systems. The agreement between the predicted and the experimental results was equally good with both equations.

[^1]
Introduction

Because of the important industrial applications of sulfolane, several investigators have studied the liquid-liquid phase equilibria for ternary systems containing sulfolane and aromatic hydrocarbons (1-4). Due to the lack of experimental data for some ternary systems, however, thermodynamic models are frequently used for predicting phase equllibrium compositions. Some of the more widely used models are the Wilson equation for excess Gibbs energy (5), the nonrandomness two-liquid equation (NRTL) proposed by Renon and Prausnitz (6), and the UNIQUAC equation of Abrams and Prausnitz (7). The interaction parameters present in these equations are evaluated

[^0]: * To whom correspondence should be addressed.

[^1]: ${ }^{\dagger}$ Current address: Conoco Oll Co., Ponca Clty, OK.

 - To whom correspondence should be addressed.

